Фильтр баттерворта на оу расчет. Курсовая работа: Фильтр верхних частот Баттерворта. Министерство образования и науки украины

В данной статье мы поговорим про фильтр Баттерворта, рассмотрим порядки фильтров, декады и октавы, подробно разберем фильтр низких частот Баттерворта третьего порядка с расчетом и схемой.

Введение

В устройствах, которые используют фильтры для формирования частотного спектра сигнала, например, в системах связи или управления, форма или ширина спада, также называемая «полосой перехода», для простого фильтра первого порядка может быть слишком длинной или необходимы широкие и активные фильтры, разработанные с более чем одним «заказом». Эти типы фильтров обычно известны как фильтры «высокого порядка» или «n- го порядка».

Порядок фильтров

Сложность или тип фильтра определяется «порядком» фильтров и зависит от количества реактивных компонентов, таких как конденсаторы или катушки индуктивности в его конструкции. Мы также знаем, что скорость спада и, следовательно, ширина полосы перехода зависит от порядкового номера фильтра и что для простого фильтра первого порядка он имеет стандартную скорость спада 20 дБ / декаду или 6 дБ / октава.

Тогда для фильтра, имеющего n- й порядковый номер, он будет иметь последующую скорость спада 20n дБ / декаду или 6n дБ / октаву. Таким образом:

  • фильтр первого порядка имеет скорость спада 20 дБ / декаду (6 дБ / октава)
  • фильтр второго порядка имеет скорость спада 40 дБ / декаду (12 дБ / октава)
  • фильтр четвертого порядка имеет частоту спада 80 дБ / декада (24 дБ / октава) и т. д.

Фильтры высокого порядка, такие как третий, четвертый и пятый, обычно формируются путем каскадного объединения одиночных фильтров первого и второго порядка.

Например, два фильтра нижних частот второго порядка могут быть соединены каскадно для получения фильтра нижних частот четвертого порядка и так далее. Несмотря на то, что порядок фильтра, который может быть сформирован, не ограничен, при увеличении порядка увеличиваются его размер и стоимость, а также снижается его точность.

Декады и октавы

Последний комментарий о Декадах и Октавах . По шкале частот декада — это десятикратное увеличение (умножение на 10) или десятикратное уменьшение (деление на 10). Например, от 2 до 20 Гц представляют одну декаду, тогда как от 50 до 5000 Гц представляют две декады (от 50 до 500 Гц, а затем от 500 до 5000 Гц).

Октава — это удвоение (умножить на 2) или уменьшение в два раза (деление на 2) по шкале частот. Например, от 10 до 20 Гц представляет одну октаву, а от 2 до 16 Гц — это три октавы (от 2 до 4, от 4 до 8 и, наконец, от 8 до 16 Гц), каждый раз удваивая частоту. В любом случае, логарифмические шкалы широко используются в частотной области для обозначения значения частоты при работе с усилителями и фильтрами, поэтому важно понимать их.

Поскольку резисторы, определяющие частоту, все равны, как и конденсаторы, определяющие частоту, отсечка или угловая частота (ƒ C) для первого, второго, третьего или даже для фильтра четвертого порядка также должны быть равны и найдены, используя знакомое уравнение:

Как и в случае фильтров первого и второго порядка, фильтры верхних частот третьего и четвертого порядка формируются простым взаимным обменом положений определяющих частоту компонентов (резисторов и конденсаторов) в эквивалентном фильтре нижних частот. Фильтры высокого порядка можно спроектировать, следуя процедурам, которые мы видели ранее в руководствах по фильтру нижних частот и фильтрам верхних частот. Однако общий коэффициент усиления фильтров высокого порядка является фиксированным, поскольку все компоненты, определяющие частоту, являются одинаковыми.

Аппроксимации фильтра

До сих пор мы рассматривали низкочастотные и высокочастотные схемы фильтра первого порядка, их результирующие частотные и фазовые характеристики. Идеальный фильтр дал бы нам спецификации максимального усиления полосы пропускания и плоскостности, минимального затухания полосы пропускания, а также очень крутой полосы пропускания, чтобы остановить спад полосы (полоса перехода), и поэтому очевидно, что большое количество сетевых откликов будет удовлетворять эти требования.

Неудивительно, что в линейном дизайне аналоговых фильтров есть ряд «аппроксимационных функций», в которых используется математический подход для наилучшего приближения передаточной функции, которая требуется нам для проектирования фильтров.

Такие конструкции известны как Эллиптический , Баттерворт , Чебышев , Бессель , Кауэр и многие другие. Из этих пяти «классических» функций аппроксимации линейного аналогового фильтра только фильтр Баттерворта и особенно конструкция фильтра Баттерворта нижних частот будут рассматриваться здесь как его наиболее часто используемая функция.

Низкочастотный фильтр Баттерворта

Частотная характеристика аппроксимационной функции фильтра Баттерворта также часто называется «максимально плоской» (без пульсаций) характеристикой, поскольку полоса пропускания спроектирована так, чтобы иметь частотную характеристику, которая является настолько плоской, насколько это математически возможно, от 0 Гц (DC) до частоты среза -3 дБ без пульсаций. Более высокие частоты за пределами точки отсечки снижаются до нуля в полосе останова на уровне 20 дБ / декада или 6 дБ / октава. Это потому, что он имеет «фактор качества», «Q» всего 0,707.

Однако одним из основных недостатков фильтра Баттерворта является то, что он достигает этой плоскостности полосы пропускания за счет широкой полосы перехода, когда фильтр изменяется от полосы пропускания к полосе остановки. Он также имеет плохие фазовые характеристики. Идеальная частотная характеристика, называемая фильтром «кирпичной стены», и стандартные аппроксимации Баттерворта для различных порядков фильтра приведены ниже.

Обратите внимание, что чем выше порядок фильтра Баттерворта, тем больше количество каскадных ступеней в конструкции фильтра и тем ближе фильтр подходит к идеальному отклику «кирпичной стены».

Однако на практике идеальная частотная характеристика Баттерворта недостижима, поскольку она вызывает чрезмерную пульсацию в полосе пропускания.

Где обобщенное уравнение, представляющее фильтр Баттерворта «n-го» порядка, частотная характеристика дается как:

Где: n представляет порядок фильтра, ω равно 2πƒ, а ε — максимальное усиление полосы пропускания (A max).

Если A max определено на частоте, равной угловой точке отсечки -3 дБ (ƒc), тогда ε будет равно единице и, следовательно, ε 2 также будет равно единице. Однако, если вы теперь хотите определить A max при другом значении усиления по напряжению, например, 1 дБ или 1.1220 (1 дБ = 20 * logA max), тогда новое значение ε находится по формуле:

Подставляя данные в уравнения, получаем:

Частотная характеристика фильтра может быть определена математически его передаточной функции с стандартом передачи напряжения Функция H (jω) и записывается в виде:

Примечание: (jω) также можно записать как (s) для обозначения S-области. и результирующая передаточная функция для фильтра нижних частот второго порядка задается как:

Нормализованные полиномы фильтра Баттерворта низких частот

Чтобы помочь в разработке своих фильтров нижних частот, Баттерворт создал стандартные таблицы нормализованных полиномов нижних частот второго порядка с учетом значений коэффициента, которые соответствуют частоте отсечки угла 1 радиан / с.

N Нормализованные полиномы знаменателя в факторизованной форме
1 (1 + S)
2 (1 + 1,414 с + с 2)
3 (1 + с) (1 + с + с 2)
4 (1 + 0,765 с + с 2) (1 + 1,848 с + с 2)
5 (1 + с) (1 + 0,618 с + с 2) (1 + 1,618 с + с 2)
6 (1 + 0,518 с + с 2) (1 + 1,414 с + с 2) (1 + 1,932 с + с 2)
7 (1 + с) (1 + 0,445 с + с 2) (1 + 1,247 с + с 2) (1 + 1,802 с + с 2)
8 (1 + 0,390 с + с 2) (1 + 1,111 с + с 2) (1 + 1,663 с + с 2) (1 + 1,962 с + с 2)
9 (1 + с) (1 + 0,347 с + с 2) (1 + с + с 2) (1 + 1,532 с + с 2) (1 + 1,879 с + с 2)
10 (1 + 0,313 с + с 2) (1 + 0,908 с + с 2) (1 + 1,414 с + с 2) (1 + 1,782 с + с 2) (1 + 1,975 с + с 2)

Расчет и схема фильтра Баттерворта низких частот

Найти порядок активного фильтра Баттерворта нижних частот, чьи характеристики приведены в качестве: A макс = 0,5 дБ на частоте полосы пропускания (ωp) 200 радиан / сек (31.8 гЦ), и A min = -20 дБ на частоте полосы остановки (ωs) 800 радиан / сек. Также разработайте подходящую схему фильтра Баттерворта, соответствующую этим требованиям.

Во-первых, максимальное усиление полосы пропускания A max = 0,5 дБ, которое равно усилению 1,0593 , помните, что: 0,5 дБ = 20 * log (A) на частоте (ωp) 200 рад / с, поэтому значение эпсилона ε находится по:

Во-вторых, минимальное усиление полосы остановки A min = -20 дБ, которое равно усилению 10 (-20 дБ = 20 * log (A)) на частоте полосы остановки (ωs) 800 рад / с или 127,3 Гц.

Подстановка значений в общее уравнение для частотной характеристики фильтров Баттерворта дает нам следующее:

Так как n всегда должно быть целым числом, то следующим самым высоким значением 2,42 будет n = 3 , поэтому «требуется фильтр третьего порядка», и для создания фильтра Баттерворта третьего порядка, ступени фильтра второго порядка требуется каскадное соединение со ступенью фильтра первого порядка.

Из приведенной выше таблицы нормализованных полиномов Баттерворта низких частот коэффициент для фильтра третьего порядка дается как (1 + s) (1 + s + s 2), и это дает нам усиление 3-A = 1 или A = 2 . В А = 1 + (Rf / R1) , выбирая значение как для резистора обратной связи Rf и резистора R1 дает нам значения 1 кОм и 1 кОм, соответственно, как: (1 кОм / 1 кОм) + 1 = 2 .

Мы знаем, что угловая частота отсечки, точка -3 дБ (ω o) может быть найдена с помощью формулы 1 / CR , но нам нужно найти ω o по частоте полосы пропускания ω p ,

Таким образом, частота отсечки угла задается как 284 рад / с или 45,2 Гц (284 / 2π), и, используя знакомую формулу 1 / RC, мы можем найти значения резисторов и конденсаторов для нашей схемы третьего порядка.

Обратите внимание, что ближайшее предпочтительное значение до 0,352 мкФ будет 0,36 мкФ или 360 нФ.

И, наконец, наша схема низкочастотного фильтра Баттерворта третьего порядка с угловой частотой среза 284 рад / с или 45,2 Гц, максимальным усилением полосы пропускания 0,5 дБ и минимальным усилением полосы остановки 20 дБ строится следующим образом.

Таким образом, для нашего фильтра низких частот Баттерворта 3-го порядка с угловой частотой 45,2 Гц, C = 360 нФ и R = 10 кОм

Фильтр Баттерворта

Передаточная функция фильтра нижних частот Баттерворта n -го порядка характеризуется выражением:

Амплитудно-частотная характеристика фильтра Баттерворта обладает следующими свойствами:

1) При любом порядке n значение АЧХ

2) на частоте среза щ=щ с

АЧХ ФНЧ монотонно убывает с ростом частоты. По этой причине фильтры Баттерворта называют фильтрами с максимально плоскими характеристиками. На рисунке 3 показаны графики амплитудно-частотных характеристик ФНЧ Баттерворта 1-5 порядков. Очевидно, что чем больше порядок фильтра, тем точнее аппроксимируется АЧХ идеального фильтра нижних частот.

Рисунок 3 - АЧХ для фильтра Баттерворта нижних частот порядка от 1 до 5

На рисунке 4 представлена схемная реализация ФВЧ Баттерворта.

Рисунок 4 - ФВЧ-II Баттерворта

Достоинством фильтра Баттерворта является максимально гладкая АЧХ на частотах полосы пропускания и ее снижение практически до нуля на частотах полосы подавления. Фильтр Баттерворта -- единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

Однако в сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления.

Фильтр Чебышева

Квадрат модуля передаточной функции фильтра Чебышева определяется выражением:

где - полином Чебышева. Модуль передаточной функции фильтра Чебышева равен единице на тех частотах, где обращается в нуль.

Фильтры Чебышева обычно используются там, где требуется с помощью фильтра небольшого порядка обеспечить требуемые характеристики АЧХ, в частности, хорошее подавление частот из полосы подавления, и при этом гладкость АЧХ на частотах полос пропускания и подавления не столь важна.

Различают фильтры Чебышева I и II родов.

Фильтр Чебышева I рода. Это более часто встречающаяся модификация фильтров Чебышева. В полосе пропускания такого фильтра видны пульсации, амплитуда которых определяется показателем пульсации е. В случае аналогового электронного фильтра Чебышева его порядок равен числу реактивных компонентов, использованных при его реализации. Более крутой спад характеристики может быть получен если допустить пульсации не только в полосе пропускания, но и в полосе подавления, добавив в передаточную функцию фильтра нулей на мнимой оси jщ в комплексной плоскости. Это, однако, приведёт к меньшему эффективному подавлению в полосе подавления. Полученный фильтр является эллиптическим фильтром, также известным как фильтр Кауэра.

АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка представлена на рисунке 5.

Рисунок 5 - АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка

Фильтр Чебышева II рода (инверсный фильтр Чебышева) используется реже, чем фильтр Чебышева I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления.

АЧХ для фильтра Чебышева нижних частот II рода четвёртого порядка представлена на рисунке 6.

Рисунок 6 - АЧХ для фильтра Чебышева нижних частот II рода

На рисунке 7 представлены схемные реализации ФВЧ Чебышева I и II порядка.

Рисунок 7 - ФВЧ Чебышева: а) I порядка; б) II порядка

Свойства частотных характеристик фильтров Чебышева:

1) В полосе пропускания АЧХ имеет равноволновой характер. На интервале (-1?щ?1) имеется n точек, в которых функция достигает максимального значения, равного 1, или минимального значения, равного. Если n нечетно, если n четно;

2) значение АЧХ фильтра Чебышева на частоте среза равно

3) При функция монотонно убывает и стремится к нулю.

4) Параметр е определяет неравномерность АЧХ фильтра Чебышева в полосе пропускания:

Сравнение АЧХ фильтров Баттерворта и Чебышева показывает, что фильтр Чебышева обеспечивает большее ослабление в полосе пропускания, чем фильтр Баттерворта такого же порядка. Недостаток фильтров Чебышева заключается в том, что их фазочастотные характеристики в полосе пропускания значительно отличаются от линейных.

Для фильтров Баттерворта и Чебышева имеются подробные таблицы, в которых приведены координаты полюсов и коэффициенты передаточных функций различных порядков.

АЧХ фильтра Баттерворта описывается уравнением

Особенности фильтра Баттерворта: нелинейная ФЧХ; частота среза не зависящая от числа полюсов; колебательный характер переходной характеристики при ступенчатом входном сигнале. С увеличением порядка фильтра колебательный характер усиливается.

Фильтр Чебышева

АЧХ фильтра Чебышева описывается уравнением

,

где T n 2 (ω/ω н ) – полином Чебышева n –го порядка.

Полином Чебышева вычисляется по рекуррентной формуле

Особенности фильтра Чебышева: повышенная неравномерность ФЧХ; волнообразная характеристика в полосе пропускания. Чем выше коэффициент неравномерности АЧХ фильтра в полосе пропускания, тем более резкий спад в переходной области при одном и том же порядке. Колебания переходного процесса при ступенчатом входном сигнале сильнее, чем у фильтра Баттерворта. Добротность полюсов фильтра Чебышева выше, чем у фильтра Баттерворта.

Фильтр Бесселя

АЧХ фильтра Бесселя описывается уравнением

,

где
;B n 2 (ω/ω cp з ) – полином Бесселя n -го порядка.

Полином Бесселя вычисляется по рекуррентной формуле

Особенности фильтра Бесселя: достаточно равномерные АЧХ и ФЧХ, аппроксимируемые функцией Гаусса; фазовый сдвиг фильтра пропорционален частоте, т.е. фильтр обладает частотно-независимым групповым временем задержки. Частота среза изменяется при изменении количества полюсов фильтра. Спад АЧХ фильтра обычно более пологий, чем у Баттерворта и Чебышева. Особенно хорошо этот фильтр подходит для импульсных цепей и фазочувствительной обработки сигнала.

Фильтр Кауэра (эллиптический фильтр)

Общий вид передаточной функции фильтра Кауэра

.

Особенности фильтра Кауэра: неравномерная АЧХ в полосе пропускания и в полосе задерживания; самый резкий спад АЧХ из всех приведенных фильтров; реализует требуемые передаточные функции при меньшем порядке фильтра, чем при использовании фильтров других типов.

Определение порядка фильтра

Требуемый порядок фильтра определяется по приведенным ниже формулам и округляется в сторону ближайшего целого значения. Порядк фильтра Баттерворта

.

Порядка фильтра Чебышева

.

Для фильтра Бесселя не существует формулы расчета порядка, вместо этого приводятся таблицы соответствия порядка фильтра минимально необходимым на заданной частоте отклонению времени задержки от единичной величины и уровню потерь в дБ).

При расчете порядка фильтра Бесселя задаются следующие параметры:

    Допустимое процентное отклонение группового времени задержки на заданной частоте ω ω cp з ;

    Может быть задан уровень ослабления коэффициента передачи фильтра в дБ на частоте ω , нормированной относительно ω cp з .

На основании этих данных определяется требуемый порядок фильтра Бесселя.

Схемы каскадов фнч 1–го и 2–го порядка

На рис. 12.4, 12.5 приведены типовые схемы каскадов ФНЧ.


а ) б )

Рис. 12.4. Каскады ФНЧ Баттерворта, Чебышева и Бесселя: а – 1–го порядка; б – 2–го порядка


а ) б )

Рис. 12.5. Каскады ФНЧ Кауэра: а – 1–го порядка; б – 2–го порядка

Общий вид передаточных функций ФНЧ Баттерворта, Чебышева и Бесселя 1–го и 2–го порядка

,
.

Общий вид передаточных функций ФНЧ Кауэра 1–го и 2–го порядка

,
.

Ключевым отличием фильтра Кауэра 2–го порядка от заграждающего фильтра является то, что в передаточной функции фильтра Кауэра отношение частот Ω s ≠ 1.

Методика расчета ФНЧ Баттерворта, Чебышева и Бесселя

Данная методика построена на основе коэффициентов, приведенных в таблицах и справедлива для фильтров Баттерворта, Чебышева и Бесселя. Методика расчета фильтров Кауэра приводится отдельно. Расчет ФНЧ Баттерворта, Чебышева и Бесселя начинается с определения их порядка. Для всех фильтров задаются параметры минимального и максимального ослабления и частота среза. Для фильтров Чебышева дополнительно определяется коэффициент неравномерности АЧХ в полосе пропускания, а для фильтров Бесселя – групповое время задержки. Далее определяется передаточная функция фильтра, которая может быть взята из таблиц, и рассчитываются его каскады 1–го и 2–го порядка, соблюдается следующий порядок расчета:

    В зависимости от порядка и типа фильтра выбираются схемы его каскадов, при этом фильтр четного порядка состоит из n /2 каскадов 2–го порядка, а фильтр нечетного порядка – из одного каскада 1–го порядка и (n 1)/2 каскадов 2–го порядка;

    Для расчета каскада 1–го порядка:

По выбранному типу и порядку фильтра определяется значение b 1 каскада 1–го порядка;

Уменьшая занимаемую площадь, выбирается номинал емкости C и рассчитывается R по формуле (можно выбрать и R , но рекомендуется выбирать C , из соображения точности)

;

Вычисляется коэффициента усиления К у U 1 каскада 1–го порядка, который определяется из соотношения

,

где К у U – коэффициент усиления фильтра в целом; К у U 2 , …, К у Un – коэффициенты усиления каскадов 2–го порядка;

Для реализации усиления К у U 1 необходимо задать резисторы, исходя из следующего соотношения

R B = R A ּ(К у U1 –1) .

    Для расчета каскада 2–го порядка:

Уменьшая занимаемую площадь выбраются номиналы емкостей C 1 = C 2 = C ;

Выбраются по таблицам коэффициенты b 1 i и Q pi для каскадов 2–го порядка;

По заданному номиналу конденсаторов C рассчитываются резисторы R по формуле

;

Для выбранного типа фильтра необходимо задать соответствующий коэффициент усиления К у Ui = 3 – (1/Q pi ) каждого каскада 2-го порядка, посредством задания резисторов, исходя из следующего соотношения

R B = R A ּ(К у Ui –1) ;

Для фильтров Бесселя необходимо умножить номиналы всех емкостей на требуемое групповое время задержки.

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Баттерворта 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Чебышева 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)


ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 3 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

Фильтр Бесселя 4 порядка

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФНЧ1)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ФВЧ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> ПФ)

ПРЕОБРАЗОВАНИЕ ЧАСТОТНЫХ СВОЙСТВ ЦФ (ФНЧ --> РФ)

    Произвести анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ (изменяя один из коэффициентов b j ). Описать характер изменения ЧХ. Сделать вывод о влиянии изменения одного из коэффициентов на поведение фильтра.

Анализ влияния ошибок задания коэффициентов цифрового ФНЧ на АЧХ проведем на примере фильтра Бесселя 4 порядка.

Выберем величину отклонения коэффициентов ε, равной –1,5%, чтобы максимальное отклонение АЧХ составило около 10%.

АЧХ "идеального" фильтра и фильтров с измененными коэффициентами на величину ε показана на рисунке:

И

з рисунка видно, что наибольшее влияние на АЧХ оказывает изменение коэффициентовb 1 и b 2 , (их величина превышает величину других коэффициентов). Используя отрицательную величину ε, отмечаем, что положительные коэффициенты уменьшают амплитуду в нижней части спектра, а отрицательные – увеличивают. При положительной величине ε, все происходит наоборот.

    Проквантовать коэффициенты цифрового фильтра на такое число двоичных разрядов, чтобы максимальное отклонение АЧХ от исходной составляло порядка 10 - 20%. Зарисовать АЧХ и описать характер ее изменения.

Изменяя число разрядов дробной части коэффициентов b j отметим, чтомаксимальное отклонение АЧХ от исходной не превышающее 20% получается приn≥3.

Вид АЧХ при различных n приведен на рисунках:

n =3, максимальное отклонение АЧХ=19,7%

n =4, максимальное отклонение АЧХ=13,2%

n =5, максимальное отклонение АЧХ=5,8%

n =6, максимальное отклонение АЧХ=1,7%

Таким образом, можно отметить, что увеличение разрядности при квантовании коэффициентов фильтра приводит к тому, что АЧХ фильтра все больше стремится к исходной. Однако необходимо отметить, что это усложняет физическую реализуемость фильтра.

Квантование при различных n можно проследить по рисунку:

Значительная часть теории расчета цифровых БИХ-фильтров (т.е. фильтров с бесконечной импульсной характеристикой) требует понимания методов расчета фильтров непрерывного вре­мени. Поэтому в данном разделе будут приведены расчетные фор­мулы для нескольких стандартных типов аналоговых фильтров, включая фильтры Баттерворта, Бесселя и Чебышева типа I и II. Под­робный анализ достоинств и недостатков способов аппроксимации заданных характеристик, соответствующих этим фильтрам, мож­но найти в ряде работ, посвященных методам расчета аналоговых фильтров, поэтому ниже будут лишь кратко перечислены основные свойства фильтров каждого типа и приведены расчетные соотно­шения, необходимые для получения коэффициентов аналоговых фильтров.

Пусть нужно рассчитать нормированный фильтр нижних частот с частотой среза, равной Ω = 1 рад/с. В качестве аппроксими­руемой функции будет, как правило, использоваться квадрат амплитудной характеристики (исключением является фильтр Бессе­ля). Будем считать, что передаточная функция аналогового фильтра является рациональной функцией переменной S следующего вида:

Фильтры Баттерворта нижних частот характеризуются тем, что имеют максимально гладкую амплитудную характеристику в начале координат в s-плоскости. Это означает, что все суще­ствующие производные от амплитудной характеристики в начало координат равны нулю. Квадрат амплитудной характеристики нормированного (т. е. имеющего частоту среза 1 рад/с) фильтра Баттерворта равен:

где n - порядок фильтра. Аналитически продолжая функцию (14.2) на всю S-плоскость, получим

Все полюсы (14.3) находятся на единичной окружности на одинако­вом расстоянии друг от друга в S-плоскости . Выразим передаточ­ную функцию Н (s) через полюсы, располагающиеся в левой полу­плоскости S :

Где (14.4)

Где k =1,2…..n (14.5)

а k 0 - константа нормирования. Используя формулы (14.2) и (14.5), можно сформулировать несколько свойств фильтров Баттерворта нижних частот.

Свойства фильтров Баттерворта нижних частот:

1. Фильтры Баттерворта имеют только полюсы (все нули пере­даточных функций этих фильтров расположены на бесконечности).

2. На частоте Ω=1 рад/с коэффициент передачи фильтров Баттерворта равен (т. е. на частоте среза их амплитудная характеристика спадает на 3 дБ).

3. Порядок фильтра n полностью определяет весь фильтр. На практике порядок фильтра Баттерворта обычно рассчиты­вают из условия обеспечения определенного ослабления па неко­торой заданной частоте Ω t > 1. Порядок фильтра, обеспечиваю­щий на частоте Ω= Ω t < уровень амплитудной характеристики, равный 1/А, можно найти из соотношения


Рис. 14.1. Расположение полюсов аналогового фильтра Баттерворта нижних частот.

Рис. 14.2- Амплитудная и фазовая характеристики, а также характерис- тика групповой задержки аналогового фильтра Баттерворта нижних частот.

Пусть, например , требуется на частоте Ω t = 2 рад/с обеспечить ослабление, равное А = 100. Тогда

Округлив n в большую сторону до целого числа, найдем, что заданное ослабление обеспечит фильтр Баттерворта 7-го порядка.

Решение . Используя в качестве расчетных характеристик 1/A == 0,0005 (что соответствует ослаблению на 66 дБ) и Ω t = 2 , получим n == 10,97. Округление дает n = 11 . На рис. 14.1 показано расположение полюсов рассчитанного фильтра Баттер­ворта в s-плоскости . Амплитудная (в логарифмическом масштабе) и фазовая характеристики, а также характеристика групповой задержки этого фильтра представлены на рис. 14.2.

Loading...Loading...