Корреляционный анализ сравнение двух сигналов. Конспект лекции: Корреляция, автокорреляция, взаимная корреляция. Свойства автокорреляционной и взаимной корреляционной функции. Связь между энергетическим спектром сигнала и его автокорреляционной функцией

Корреляционный анализ может быть применен для проверки наличия полезного сигнала на фоне присутствующих шумов и помех, а также для проверки эффективности работы цифровых фильтров. В первом случае рассчитывается нормированная корреляционная функция между фрагментом полезного сигнала и числовым рядом дискретизированного входного зашумленного сигнала. По графику корреляционной функции визуально обнаруживают присутствие искомого сигнала в зашумленном входном сигнале.

Во втором случае, с целью проверки эффективности фильтрации, сначала рассчитывается корреляционная функция полезного эталонного сигнала, представленного числовым рядом, и отфильтрованного сигнала. После чего путем применения прямого дискретного преобразования Фурье к корреляционной функции получают коррелограмму. На полученном графике строят линию критического уровня с учетом ошибки фильтрации с использованием критерия Стьюдента. Эффективность фильтрации определяют визуально: выше критического уровня должны находиться только составляющие спектральной плотности полезного сигнала.

Для большей наглядности и объективности рассчитывается выборочный коэффициент корреляции между числовыми рядами эталонного (исходного полезного) и отфильтрованного сигналов. Коэффициент корреляции может принимать значения в интервале –1…1. Отрицательные значения говорят о том, что эталонный и отфильтрованный сигналы коррелируют в противофазе, т.е. при инверсии отфильтрованного сигнала. В случае если цифровой фильтр обладает хорошей эффективностью фильтрации от помех и шумов, коэффициент корреляции принимает значения, близкие к 1 или –1. Качество разных цифровых фильтров применительно к конкретному сигналу может быть определено путем сравнения рассчитанных коэффициентов корреляции.

Расчет корреляционной функции дискретных сигналов производится следующим образом. Для дискретных сигналов Х(i) и Y(i), i = 1… N выбирается фрагмент массива Y(i), i = 1… N/2 и рассчитывается корреляционная функция

где – величина сдвига в дискретах.

Коррелограмму или спектр корреляционной функции получают путем применения прямого дискретного преобразования Фурье к корреляционной функции:

- действительная часть спектра

;

- мнимая часть спектра

;

- модуль спектральной плотности корреляционной функции

Частоты, соответствующие значениям спектра ,

где – период дискретизации входного сигнала.

Расчет коэффициента корреляции между дискретными сигналами (числовыми рядами) Х(i) и Y(i), i = 1… N производится следующим образом.



Средние значения (математические ожидания) для числовых рядов Х(i) и Y(i):

Дисперсии

; .

Второй смешанный центральный момент

.

Выборочный коэффициент корреляции

Понятие корреляция означает схожесть. Корреляционная функция сигнала является функцией и определяется выражением

где τ – временной сдвиг сигнала.

При выражение (2.65) принимает вид

где Е - энергия сигнала. Таким образом, при нулевом временном сдвиге корреляционная функция равна энергии сигнала.

Кроме корреляционной функции (2.65) существует взаимно корреляционная функция, которая характеризует взаимную связь между значениями двух сигналов и определяется выражением:

Когда U1(t) и U2(t) являются одним и тем же сигналом U(t), то взаимно корреляционная и корреляционная функция совпадают.

Корреляционная функция принимает максимальное значение только при . Взаимно корреляционная функция двух одинаковых сигналов также достигает максимума при . Для различных сигналов U1(t) и U2(t) максимальное значение функции может достигать не при . Например, взаимно корреляционная функция косинусоиды имеет максимальное значение при .

Рассмотрим корреляционные функции типовых сигналов.

Прямоугольный видеосигнал и его корреляционная функция показаны на рис. 2.24.

Корреляционная функция периодического видеосигнала с периодом Т на основании (2.66) имеет вид:

(2.67)

Корреляционная функция гармонического сигнала равна:

Сигнал и его корреляционная функция показаны на рис 2.25.

Рис. 2.25. Гармонический сигнал (а) и его корреляционная функция (б).

Взаимно корреляционная функция двух гармонических сигналов одинаковой частоты и имеет вид:

(2.69)

Если и , то взаимно корреляционная функция (2.68) равна корреляционной функции гармонического сигнала (2.69).

Взаимно корреляционная функция двух гармонических сигналов с различными частотами равна нулю. Следовательно, гармонические сигналы с различными частотами являются некоррелированными (не схожими) между собой.

С физической точки зрения корреляционная функция характеризует взаимосвязь или взаимозависимость двух мгновенных значений одного или двух различных сигналов в моменты времени и . В первом случае корреляционную функцию часто называют автокорреляционной, а во втором - взаимнокорреляционной. Корреляционные функции детерминированных процессов зависят только от .

Если заданы сигналы и , то корреляционные функции определяют следующими выражениями:

- взаимнокорреляционная функция; (2.66)

- автокорреляционная функция. (2.67)

Если и - два периодических сигнала с одинаковым периодом T , то очевидно, что их корреляционная функция тоже является периодической с периодом Т и, следовательно, она может быть разложена в ряд Фурье.

Действительно, если в выражении (2.66) разложим в ряд Фурье сигнал , то получим

(2.68)

где и - комплексные амплитуды n -й гармоники сигналов и соответственно, - комплексно-сопряженный с коэффициент. Коэффициенты разложения взаимно корреляционной функции можно найти как коэффициенты ряда Фурье

. (2.69)

Частотное разложение автокорреляционной функции легко получить из формул (2.68) и (2.69), положив , тогда

. (2.70)

А так как и, следовательно,

, (2.71)

то автокорреляционная функция - четная и поэтому

. (2.72)

Четность автокорреляционной функции позволяет ее разложить в тригонометрический ряд Фурье по косинусам

В частном случае, при , получим:

.

Таким образом, автокорреляционная функция при представляет собой полную среднюю мощность периодического сигнала , равную сумме средних мощностей всех гармоник.

Частотное представление импульсных сигналов

В предыдущем рассмотрении предполагалось, что сигналы непрерывны, однако при автоматической обработке информации часто используются и импульсные сигналы, а также преобразование непрерывных сигналов в импульсные. Это требует рассмотрения вопросов частотного представления импульсных сигналов.

Рассмотрим модель преобразования непрерывного сигнала в импульсную форму, представленную на рис.2.6а.



Пусть на вход импульсного модулятора поступает непрерывный сигнал (рис.2.6б). Импульсный модулятор формирует последовательность единичных импульсов (рис.2.6в) с периодом Т и длительностью импульсов t , причем . Математическую модель такой последовательности импульсов можно описать в виде функции :

(2.74)

где k - номер импульса в последовательности.

Выходной сигнал импульсного модулятора (рис.2.6г) можно представить в виде:

.

На практике желательно иметь частотное представление последовательности импульсов. Для этого функцию , как периодическую, можно представить в виде ряда Фурье:

, (2.75)

- спектральные коэффициенты разложения в ряд Фурье; (2.76)

Частота следования импульсов;

n - номер гармоники.

Подставляя в выражение (2.76) соотношение (2.74), найдем :

.

Подставляя (2.76) в (2.74), получим:

(2.78)

Преобразуем разность синусов, тогда

. (2.79)

Введем обозначение фазы n -ой гармоники

. (2.81)

Таким образом, последовательность единичных импульсов содержит наряду с постоянной составляющей бесконечное число гармоник с уменьшающейся амплитудой. Амплитуда k -ой гармоники определяется из выражения:

При цифровой обработке сигналов проводится дискретизация (квантование) по времени, то есть преобразование непрерывного сигнала в последовательность коротких импульсов. Как показано выше, любая последовательность импульсов имеет довольно сложный спектр, поэтому возникает естественный вопрос, каким образом процесс дискретизации по времени влияет на частотный спектр исходного непрерывного сигнала.

Для исследования этого вопроса рассмотрим математическую модель процесса дискретизации по времени, представленную на рис.2.7а.

Импульсный модулятор (ИМ) представляется в виде модулятора с несущей в виде идеальной последовательности очень коротких импульсов (последовательности d -функций) , период следования которых равен Т (рис.2.7б).

На вход импульсного модулятора поступает непрерывный сигнал (рис.2.7в), а на выходе образуется импульсный сигнал (рис.2.7г).


Тогда модель идеальной последовательности d -функций можно описать следующим выражением

В теории связи корреляционная теория используется при исследовании случайных процессов, позволяя установить связь между корреляционными и спектральными свойствами случайных сигналов. Часто возникает задача обнаружения одного передаваемого сигнала в другом или в помехах. Для надежного обнаружения сигналов и применяется метод корреляции , основанный на корреляционной теории. На практике оказывается полезным анализ характеристики, дающей представление о скорости изменения во времени, а также длительности сигнала без разложения его на гармонические составляющие.

Пусть копия сигнала u(t - т) смещена относительно своего оригинала u(t) на интервал времени т. Для количественной оценки степени отличия (связи) сигнала u(t) и его смещенной копии u(t - т) используют автокорреляционную функцию (АКФ). АКФ показывает степень сходства между сигналом и его сдвинутой копией - чем больше значение АКФ, тем это сходство сильнее.

Для детерминированного сигнала конечной длительности (финитного сигнала) аналитическая запись АКФ представляет собой интеграл вида

Формула (2.56) показывает, что при отсутствии сдвига копии относительно сигнала (т = 0) АКФ положительна, максимальна и равна энергии сигнала:

Такая энергия [Дж] выделяется на резисторе с сопротивлением в 1 Ом, если к его выводам подключить некоторое напряжение u(t) [В].

Одним из важнейших свойств АКФ является ее четность: В(т) = В(- т). Действительно, если в выражении (2.56) произвести замену переменной х = t - т, то

Поэтому интеграл (2.56) можно представить в другом виде:

Для периодического сигнала с периодом Г, энергия которого бесконечно велика (поскольку сигнал существует бесконечное время), вычисление АКФ по формуле (2.56) неприемлемо. В этом случае определяют АКФ за период:

Пример 2.3

Определим АКФ прямоугольного импульса, который имеет амплитуду Е и длительность т и (рис. 2.24).

Решение

Для импульса вычисления АКФ удобно провести графически. Такое построение показано на рис. 2.24, а - г, где приведены соответственно исходный импульс u(t) = u t сдвинутая на т его копия м т (?) = u(t - т) = м т и их произведение u(f)u(t - т) = uu v Рассмотрим графическое вычисление интеграла (2.56). Произведение u(t)u(t - т) не равно нулю на интервале времени, когда имеется наложение друг на друга любых частей сигнала и его копии. Как следует из рис. 2.24, этот интервал равен х - т м, если временной сдвиг копии меньше длительности импульса. В подобных случаях для импульса АКФ определится как В(т) = Е 2 (т и - |т|) при временном сдвиге копии на текущее время |т| В(0) = = Е 2 т и = Э (см. рис. 2.24, г).

Рис. 2.24.

а - импульс; 6 - копия; в - произведение сигнала и копии; г - АКФ

Часто вводят удобный для анализа и сравнения сигналов числовой параметр - интервал корреляции т к, аналитически и графически равный ширине основания АКФ. Для данного примера интервал корреляции т к = 2т и.

Пример 2.4

Определим АКФ гармонического (косинусоидального) сигнала u(t) = = t/ m cos(co? + а).


Рис. 2.25.

а - гармонический сигнал; б - АКФ гармонического сигнала

Решение

Используя формулу (2.57) и обозначив В п (т) = В(т), находим

Из этой формулы следует, что АКФ гармонического сигнала тоже является гармонической функцией (рис. 2.25, б) и имеет размерность мощности (В 2). Отметим еще один очень важный факт, что вычисленная АКФ не зависит от начальной фазы гармонического сигнала (параметр

Из проведенного анализа следует важный вывод: АКФ практически любого сигнала не зависит от его фазового спектра. Следовательно, сигналы, амплитудные спектры которых полностью совпадают, а фазовые различаются, будут иметь одинаковую АКФ. Еще одно замечание заключается в том, что по АКФ нельзя восстановить исходный сигнал (опять же вследствие утраты информации о фазе).

Связь между АКФ и энергетическим спектром сигнала. Пусть импульсный сигнал u(t) имеет спектральную плотность 5(со). Определим АКФ но формуле (2.56), записав и(С) в виде обратного преобразования Фурье (2.30):

Введя новую переменную х = t - т, из последней формулы получим Здесь интеграл

есть функция, комплексно-сопряженная спектральной плотности сигнала

С учетом соотношения (2.59) формула (2.58) примет вид Функцию

называют энергетическим спектром (спектральной плотностью энергии) сигнала, показывающим распределение энергии по частоте. Размерность энергетического спектра сигнала соответствует величине IP/со) - [(В 2 -с)/Гц].

Учитывая соотношение (2.60), окончательно получим выражение для АКФ:

Итак, АКФ сигнала представляет собой обратное преобразование Фурье от его энергетического спектра. Прямое преобразование Фурье от АКФ

Итак, прямое преобразование Фурье (2.62) АКФ определяет энергетический спектр, а обратное преобразование Фурье энергетического спектра (2.61) - АКФ детерминированного сигнала. Эти результаты важны по двум причинам. Во-первых, исходя из распределения энергии но спектру становится возможным оценить корреляционные свойства сигналов - чем шире энергетический спектр сигнала, тем меньше интервал корреляции. Соответственно, чем больше интервал корреляции сигнала, тем короче его энергетический спектр. Во-вторых, соотношения (2.61) и (2.62) позволяют экспериментально определить одну из функций по значению другой. Часто удобнее вначале получить АКФ, а затем с помощью прямого преобразования Фурье вычислить энергетический спектр. Этот прием широко применяют при анализе свойств сигналов в реальном масштабе времени, т.е. без временной задержки при его обработке.

Взаимокорреляционная функция двух сигналов. Если надо оценить степень связи между сигналами u x (t) и u 2 (t), то используют взаимокорреля- ционную функцию (ВКФ)

При т = О ВКФ равна так называемой взаимной энергии двух сигналов

Значение ВКФ не меняется, если вместо задержки второго сигнала u 2 (t) рассматривать опережение его первым сигналом м,(?), поэтому

АКФ является частным случаем ВКФ, если сигналы одинаковы, т.е. u y (t) = u 2 (t) = u(t). В отличие от АКФ ВКФ двух сигналов В 12 (т) не является четной и необязательно максимальна при т = 0, т.е. при отсутствии временного сдвига сигналов.

Вид алгоритма оптимального приема, а также качественные показатели системы передачи дискретных сообщений существенно зависят от характеристики

которую будем называть взаимокорреляционной функцией позиции комплексного опорного сигнала и комплексного принимаемого поля, соответствующего позиции, где временной сдвиг между ними, обусловленный несогласованностью во времени.

Функция является мерой «различия» (или «близости») сигналов с индексами Если в ансамбль сигналов включить и все реализации помехи в канале, то эта функция определит также меру «различия» («близости») между сигналом и помехой, а также между отдельными реализациями помехи. Такая характеристика различимости сигнала и помехи использована в ряде работ, например .

При выводе последних формул учтены соотношения, следующие из равенства Парсеваля:

Функции будем называть соответственно функцией взаимной корреляции принимаемых сигналов и функцией взаимной корреляции сопряженных сигналов в месте приема. Первая из них определяет свойства оптимального когерентного приема, в то время как для характеристики оптимального приема при неопределенной фазе сигнала (некогерентный прием) требуется знание только модуля (огибающей) комплексной функции корреляции

Комплексный опорный сигнал, используемый в схемах оптимального когерентного приема (см. ниже)

где функция, являющаяся решением интегрального уравнения

где корреляционная функция аддитивной помехи. Поскольку корреляционная функция может быть разложена в билинейный ряд по своим собственным функциям

где собственные числа, то решение интегрального уравнения (1.52) можно записать в виде

В том случае, когда помеха является суммой двух частей - сосредоточенной и флуктуационной, некоррелированных между собой, разлагая корреляционную функцию сосредоточенной части помехи в ряд (1.53), получаем

где собственные числа и собственные функции, соответствующие Поскольку корреляционная функция белого шума со спектральной плотностью для любого ортонормированного базиса представима в виде

(все собственные числа одинаковы и равны N), то

С учетом (1.51) функцию будем также называть взвешенной [с весом комплексной взаимокорреляционной

функцией двух реализаций комплексных сигналов в месте приема Выражение (1.51) можно записать в виде

Предполагай весовую функцию однородной, т. е. можно показать, что и связаны между собой парой преобразований Гильберта. Ансамбли сигналов, для которых

будем называть ортогональными в месте приема при произвольных временных сдвигах Если выполняется условие то будем говорить об ортогональной системе сигналов в месте приема.

Если в (1-47) то будем называть корреляционной функцией принимаемых комплексных сигналов. Фактически можно говорить лишь о приближенном выполнении условия (1.59), так как его строгое выполнение возможно лишь при использовании сигналов, спектры которых нигде не перекрываются, что неосуществимо. На практике условия (1.59) часто выполняются при любых лишь при значениях

В этом случае будем говорить, что при несовпадении индексов выполняется условие узости для взаимокорреляционной функции, а при совпадении индексов - условие узости корреляционных функций.

Введем нормированные корреляционные функции при

Энергетическое отношение (сигнал/помеха) для сигнала в месте приема. Можно показать, что Следовательно, нормированная корреляционная функция (1.61) удовлетворяет условию Аналогично можно показать, что такому же условию удовлетворяет и нормированная функция корреляции сопряженных принимаемых сигналов

При неопределенной фазе сигнала в некоторых случаях свойства приемника характеризуются огибающей (1.50) и соответственно нормированной огибающей

Назовем систему принимаемых сигналов, для которой

ортогональной в усиленном смысле при произвольных временных сдвигах

Очень часто мы имеем дело с системой сигналов, удовлетворяющих условию которую будем, пользуясь терминологией , называть ортогональной в усиленном смысле (в месте приема).

На практике условия (1.64) обычно выполняются лишь в границах (1.60).

Аналогично введенным характеристикам принимаемых сигналов можно ввести взвешенные корреляционные и взаимокорреляционные характеристики передаваемых сигналов:

Это условие обеспечивает также ортогональность принимаемых сигналов в усиленном смысле при произвольных сдвигах во времени.

При определенном фазировании в канале для обычной ортогональности принимаемых сигналов достаточна ортогональность передаваемых сигналов (с тем же весом).

Для однолучевого канала ортогональность и ортогональность в усиленном смысле принимаемых сигналов при любых временных сдвигах эквивалентны соответственно ортогональности и ортогональности в усиленном смысле при любых временных сдвигах передаваемых сигналов с весом

Для узкополосных передаваемых и принимаемых сигналов ортогональность в усиленном смысле при произвольных ненулевых сдвигах равносильна обычной ортогональности при любых сдвигах. Однако для таких сигналов ортгональность в усиленном смысле (при ) не эквивалентна обычной ортогональности.


Loading...Loading...